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Vortex shedding behind a cylinder can be controlled by placing another small cylinder
behind it, at low Reynolds numbers. This has been demonstrated experimentally by
Strykowski & Sreenivasan (J. Fluid Mech. vol. 218, 1990, p. 74). These authors
also provided preliminary numerical results, modelling the control cylinder by the
innovative application of boundary conditions on some selective nodes. There are
no other computational and theoretical studies that have explored the physical
mechanism. In the present work, using an over-set grid method, we report and verify
numerically the experimental results for flow past a pair of cylinders. Apart from
providing an accurate solution of the Navier–Stokes equation, we also employ an
energy-based receptivity analysis method to discuss some aspects of the physical
mechanism behind vortex shedding and its control. These results are compared with
the flow picture developed using a dynamical system approach based on the proper
orthogonal decomposition (POD) technique.

1. Introduction
Vortex shedding behind a circular cylinder at low Reynolds numbers has been

altered by the placement of a smaller cylinder in the near wake of the cylinder
(Strykowski 1986; Strykowski & Sreenivasan 1990). Hereinafter, the bigger cylinder
will be referred to as the main cylinder, whereas the smaller cylinder in the wake
of the main cylinder will be referred to as the control cylinder. From experimental
observations, the authors concluded that the control cylinder (i) reduces the temporal
growth rate of disturbances; (ii) alters or controls vortex shedding that shows up
in reduced drag and movement of peaks at lower frequencies in the spectrum;
(iii) changes the local stability by smearing and diffusing concentrated vorticity by
diverting a small amount of fluid in the near-wake of the main cylinder. Vortex
shedding was suppressed for Reynolds numbers (Re, defined by the diameter D of
the main cylinder and the oncoming free-stream speed) below 80. They also reported
numerical results for Re= 55 in a small physical domain (−3.4 < x/D < 9.7) using a
second-order finite-difference Galerkin method. The problem was solved using a single
block-structured grid and the control cylinder was modelled by enforcing a no-slip
condition on six grid points occupying an area similar to that of the control cylinder.

Barring the early numerical results of Strykowski & Sreenivasan (1990), there are
no other numerical efforts that reproduce the experimental observations of Strykowski
(1986) and Strykowski & Sreenivasan (1990). First and foremost, to study this flow
one needs accurate numerical methods that are free of spurious numerical dispersion
effects, because, such spurious numerical dispersion leads to vortex shedding. Thus, it is
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not easy to compute flows where such alternate shedding of vortices are suppressed or
stopped physically. Lower-accuracy methods apart from being spuriously dispersive,
also have larger truncation errors that trigger flow asymmetry and vortex shedding. In
contrast, higher-order methods display delayed onset of flow asymmetry (see Nair &
Sengupta 1996) owing to a lower level of asymmetric-error and numerical dispersion
effects. Thus, satisfaction of physical dispersion relation (also termed the dispersion
relation preservation (DRP) property) is central to computing physically unstable
flows. Issues of accuracy, DRP property and numerical stability for direct simulation
of transitional and turbulent flows are discussed in Sengupta (2004) – that and
Sengupta, Ganeriwal & De (2003b) introduced some high-accuracy compact schemes
which satisfy the above requirements of direct simulation. Secondly, it is difficult
to produce an accurate solution for physically unstable flows in multiply-connected
domains using structured non-orthogonal grids. The non-orthogonality requires the
discretization of a larger number of terms, invariably introducing additional large
sources of error. Solving the Navier–Stokes equation for this class of problems, by
finite-element and finite-volume methods (FEM and FVM) using unstructured grids
for multiply-connected domains will also not be successful, if adopted methods do not
satisfy the DRP property. These shortcomings of many numerical schemes employed
in commonly used FEM and FVM are discussed in Sengupta (2004) and Sengupta,
Talla & Pradhan (2005) and other references contained therein. In the present work,
the high-resolution compact scheme of Sengupta et al. (2003b) is used to solve
Navier–Stokes equations on over-set orthogonal grids. The requirements for direct
simulation of physically unstable flows are discussed in the Appendix (available with
the online version of the paper), comparing the present finite-difference method with
other popular spatial discretization methods used in finite-element and finite-volume
calculations and the role of the correct far-field boundary condition.

The power of the emerging direct simulation methodologies has not been
successfully translated as yet in computing physically unstable flows in a multiply-
connected domain. Although, significant progress has been made in solving
engineering problems using finite-element, finite-volume and finite-difference methods
employing over-set grids for complex geometries. Developments in over-set grid
method are given in Steger & Benek (1987), Chesshire & Henshaw (1990) and
Henshaw (1994). Extension of high-accuracy methods in conjunction with an over-set
grid method is used here in solving the problem of the control of vortex shedding.

Strykowski & Sreenivasan (1990), Strykowski (1986) and Sreenivasan, Strykowski
& Olinger (1987), identified vortex shedding as a result of absolute instability in the
near-wake owing to the temporal growth of unstable modes. Jackson (1987) identified
Hopf bifurcation of steady flow as producing periodic flows. In contrast, Sengupta
et al. (2003b) have proposed vortex shedding as a consequence of spatio-temporal
instability of an equilibrium solution. This equilibrium solution can represent either
a steady or an unsteady primary flow. Theoretical explanation of the instability
is based upon the time evolution of disturbance energy (Ed), whose instantaneous
spatial distribution is governed by an equation derived from the rotational form of
the Navier–Stokes equation without making any simplifying assumption, as given in
Sengupta, De & Sarkar (2003a),

∇2Ed = 2ωm · ωd + ωd · ωd − V m · ∇ × ωd − V d · ∇ × ωm − V d · ∇ × ωd . (1.1)

In this equation, V and ω represent velocity and vorticity fields, respectively. The
subscripts m and d refer to the equilibrium and the disturbance quantities. At any
instant, one can solve the above Poisson equation to obtain the distribution of Ed from
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the obtained solution of the Navier–Stokes equation. This approach was found most
suitable in predicting bypass transition in Sengupta et al. (2003a) and Sengupta &
Dipankar (2005), where growth or decay of Ed with time was predicted – not by
solving equation (1.1) over successive time steps, but by looking at the presence
of disturbance energy sources (sinks) given by the right-hand side of (1.1) where
it becomes negative (positive). This mechanism of predicting growth and decay of
disturbance energy is significant, as it is based on the full Navier–Stokes equation
without any assumptions – unlike in other instability theories.

Vortex shedding behind a bluff body displays complicated spatio-temporal
variations that can be analysed using proper orthogonal decomposition (POD) as
a tool. POD as a statistical technique allows us to present coherent structures as a
low-dimensional description of the flow. Also, POD as a linear operation allows us to
study the flow locally that can be used to discriminate between pockets of convective
and absolute instability for bluff-body flows. Deane & Mavriplis (1994) and Deane
et al. (1991) have used the POD technique to propose vortex shedding as being due
to interactions between the leading pair of eigen-modes that are roughly 90◦ phase
apart in time and this, coupled with the discrepancy in phase in space (streamwise
direction), leads to the travelling character of the vortex street. The higher modes
represent higher frequencies and also posses travelling character as the leading pair.

In the present study, we have tried to interpret vortex shedding and its suppression
in terms of unsteady disturbance energy growth, as given by (1.1), and in terms of
POD modes. In the next section, the numerical simulation methods and results are
given for a few specific cases studied. In § 3, vortex shedding is viewed in terms of
unsteady disturbance growth. This is followed by the characterizing of vortex shedding
and its control by POD in § 4. The paper closes with a summary of the present work.

2. Numerical simulation of vortex-shedding and suppression cases
In the present computations, the Navier–Stokes equation is solved using

streamfunction–vorticity (ψ − ω) formulation. Governing equations are solved using
the over-set grids shown in figure 1(a). Details of basic numerical methods used for
solving the vorticity transport equation are as given in the online Appendix. We
have considered two diameter ratio cases for the main (D) and control cylinders
(d); Case A: D/d = 7 for Re = 150 and Case B: D/d =10 for Re = 63 and 79. Some
experimental results for these cases are given in Strykowski (1986) and Strykowski &
Sreenivasan (1990) and are used here to validate the computations. For Case A, the
control cylinder is positioned at x/D =1.75 and y/D = 1 with respect to the centre
of the main cylinder. For Case B, the control cylinder is positioned at x/D = 1.2 and
y/D =0.95 with respect to the centre of the main cylinder. The outer boundary for
the grid system, Ω1, for both the cases, extended up to 40D with 301 equi-angularly
spaced points in the azimuthal direction and 400 points in the wall-normal direction.
The wall resolution of the radial grid line is 0.005D for all the cases reported here.
For Case A, the grid system around the control cylinder, Ω2, uses 201 points in the
azimuthal direction and 80 points in the wall-normal direction, up to x = D from
the centre of the control cylinder. For Case B, the grid system around the control
cylinder, Ω2, uses 151 points in the azimuthal direction and 60 points in the radial
direction, up to x = 0.65D from the centre of the control cylinder. Typical grid layout
for the over-set method is shown in figure 1(a).

All the lower-Reynolds-number cases display alteration or suppression of shedding
of vortices in the near wake, whereas the Re = 150 case displays regular periodic shed
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Figure 1. (a) Over-set grid shown using only limited grid lines and (b) schematic of the flow
field identifying the inflow and outflow of the computing domain.

vortices in the wake. No data were reported for Re exceeding 120 in Strykowski (1986)
and the results presented here for Re= 150 are to show that the flow is controlled
minimally, whereas it is effective at Reynolds number below 80. Here, the vorticity
transport equation and the streamfunction equation that have been solved are given
by,

∂ω

∂t
+ (V · ∇)ω =

1

Re
∇2ω, (2.1)

∇2ψ = −ω. (2.2)

The non-dimensionalized equations have been obtained with D as the length scale
and U∞ as the velocity scale. Details of the inflow and outflow used for the grid
system Ω1 are shown in figure 1(b) for the purpose of applying boundary conditions.
Equations (2.1) and (2.2) are solved subject to the no-slip boundary condition on
the cylinder walls and uniform flow on the inflow of Ω1. At the outflow boundary
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of Ω1, a convective boundary condition is used for the radial component of the
velocity (Vr ): ∂Vr/∂t +Vc∂Vr/∂r =0, where Vc is the convection speed calculated from
the previous time step at the outflow for Vr . This is based on the work reported
in Esposito, Verzicco & Orlandi (1993) and Orlanski (1976), that addressed this
important issue of the outflow boundary condition in correctly capturing flow past
bluff bodies. Having obtained the Vr , we can calculate the streamfunction directly upon
integration. Thereafter, vorticity is calculated from (2.2). This convective boundary
condition (CBC) allows smooth passage of vortices through the outflow without any
reflections. This outflow boundary condition is absolutely essential for the success
of the present computations and additional discussion and results are provided in
figure 13 of the online Appendix.

Here, (2.1) and (2.2) are solved in each of the sub-domains (Ω1, Ω2) independently
using synthesized boundary conditions obtained at the sub-domain boundaries, as
defined in the following. To solve the problem in Ω1, auxiliary boundary conditions
are obtained on ABCD of figure 1(a) from the solution obtained in Ω2. Similarly, to
solve the problem in Ω2, auxiliary boundary conditions are required on PQRS that
are supplied from the solution in Ω1. At each time step, this procedure is iterated until
the solutions for (2.2) converge to the desired tolerance. The success of the over-set
grid method depends on how accurately these auxiliary boundary conditions can be
obtained at the inter-grid boundaries (ABCD and PQRS in figure 1a) from the donor
neighbouring grids. The basic procedure followed in interpolating boundary data at
an acceptor point (p) is to consider a cloud of donor points in its neighbourhood.
The interpolation of functions at this cloud of points in terms of the function and its
derivatives at p gives the residue at the ith point as,

Ri = −fi + fp + fx |p�xi + fy |p�yi + fxx |p
�x2

i

2
+ fyy |p

�y2
i

2
+ fxy |p�xi�yi + · · · .

We can construct an objective function, F =
∑N

i =1 R2
i , and minimize it with respect

to fp and the derivatives fx |p , fy |p , etc. This shows that we require a minimum
of three donor points for linear interpolation and six donor points for quadratic
interpolation. Although more donor points can be used in a least-squares sense, it is
noted that the accuracy is degraded when a larger number of donor points are used.
In the present work, we have used a cloud of seven donor points for least-squares
quadratic interpolation to obtain all the inter-grid boundary data.

Loads are calculated for the main cylinder by solving the pressure Poisson equation
(PPE):

∇2

(
p

ρ
+

V 2

2

)
= ∇ · (V × ω). (2.3)

The quantity in the parentheses on the left-hand side is the total pressure and is a
good measure of total mechanical energy for incompressible flows. Instead of solving
this PPE in the multiply connected domain, here (2.3) is solved in a small part of
Ω1 surrounding the main cylinder. This is feasible, as the solution of the PPE can
be performed as and when necessary, using the velocity and vorticity information in
the domain. Furthermore, we can obtain very accurate boundary conditions derived
from the normal momentum equation as applied to the solid body in Ω1 and to the
outer boundary used for solving the PPE:

h1

h2

∂p

∂η
= −h1uω +

1

Re

∂ω

∂ξ
− h1

∂v

∂t
, (2.4)
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where ξ and η are the contra-variant azimuthal and radial transformed coordinates
and h1 = (x2

ξ + y2
ξ )

1/2 and h2 = (x2
η + y2

η)
1/2 are the scale factors of transformation

from the Cartesian to (ξ, η)-coordinate system; u and v are the azimuthal and
radial contra-variant components of velocity. In (2.4), all the quantities on the right-
hand side can be accurately evaluated from the solution of (2.1) and (2.2). These
boundary conditions are ‘exact’ if the derivatives in the normal momentum equation
are calculated accurately enough. Because of this, we can truncate Ω1 for solving
PPE and obtain loads for different parts of a multiply-connected domain separately.
Details of the rationale and procedures for solving the PPE in a truncated domain are
given in Sengupta, Vikas & Johri (2006). In the present exercise, the first 50 radial lines
have been used in the truncated Ω1 domain to solve the PPE. The obtained pressure
and vorticity fields are integrated to calculate loads acting on the main cylinder. This
particular method of fixing the Neumann boundary condition at the outflow, at a
small distance from the main cylinder shows unsteadiness in the calculated loads, i.e.
the unsteady boundary conditions cause unsteadiness in the calculated pressure at
high frequencies.

Results for lift and drag coefficients are shown for all the computed cases in
figures 2. For Case A (Re = 150; D/d = 7), results are shown for the controlled and
uncontrolled cases in figure 2(a). There are small-scale variations in the calculated
loads owing to the method of calculating the pressure field, as explained above.
Additionally, conjugate gradient methods displays non-smooth residue variations in
general and that can add to this. In this figure, the plots of Cl and Cd show the
significant effects of the transient up to t = 20 for the uncontrolled case. The periodic
variations are clearly visible for the uncontrolled case, whereas for the controlled
case, periodic variations are seen for Cl , with lower amplitude and longer time period.
As shown in Nair & Sengupta (1996), the onset of asymmetry and vortex shedding
for flow past a circular cylinder in computations depends on the accuracy of the
numerical method, if the flow field does not have any preferred direction. In this
case, fixing an outflow boundary (figure 1b) imposes a directionality and thus the
onset of asymmetry is immediate at the impulsive start. It is also noted that there is
a non-negligible drag reduction when the flow is controlled.

For the case of Re = 63 (D/d =10), corresponding results for Cl and Cd are shown
in figure 2(b). For this case, the effects of transients are seen for even smaller time
duration and the positioning of the control cylinder significantly alters the shedding
pattern. There are no visible periodic variations for Cl and Cd for this case. However, it
is seen from the streamline contours that the vortex shedding takes place at location
farther downstream, that does not affect the lift and drag coefficients. Strykowski
(1986) found that the vortex shedding could be suppressed for up to Re= 80, so we
have computed the case for Re = 79 (figure 2c). In figure 2, the controlled flow is
compared with the corresponding uncontrolled flow, which clearly shows the effect of
control. Comparing this case with the case of Re= 150, we note a significantly higher
drag reduction, as well as larger unsteadiness control in terms of amplitude and time
period. The effects of lowering the Reynolds number is also clearly evident (figure 2).

To use the present calculations, it is necessary to check the validity of these results
by comparing them with the experimental data in Strykowski (1986). We compare the
Roshko number, FR = f D2/ν, which can be written in terms of the non-dimensional
quantities used in the present computations as FR =Re/Tp , where Tp is the time
period of vortex shedding. In our calculations, we note the time period from the
velocity history at x/D = 10. For the controlled case of Re =79 we note Tp =8.08,
and FR = 9.77, which compares well with FR

∼= 9.0 given in figure 24 of Strykowski
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Figure 2. Variation of lift and drag coefficients with time for the cases indicated
(a) Re = 150, (b) 63, (c) 79.

(1986) for Re= 80. For the uncontrolled case of Re= 79, our calculations provide
FR = 11.96, which compares with the experimental value of 13 (approx.) for Re= 80.
Similarly, for the other computed cases, we have obtained the FR and shown them
in figure 3(a). The values show similar qualitative trends to those in figure 24 of
Strykowski (1986). In figures 3(b) and 3(c), the power spectral density (PSD) of the
computed Cl data are shown, plotted against the non-dimensional angular frequency.
In these figures, the main peak is identified with the shedding frequency. The physical
frequencies calculated using the PSD differ from the value calculated from the time-
period value used in FR . For Re= 63, this corresponds to f = 236.5 Hz which is
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Figure 3. The Roshko numbers and power spectra shown for the indicated cases. In (b) and
(c), the variable is non-dimensionalized angular frequency.

different from the value of 153.4 Hz obtained from FR . A similar trend is noted for
other Reynolds numbers as well. However, the values calculated from the Roshko
number tend to match well with the experimental data. The calculated value of the
shedding frequency from FR is 212.76 Hz for the controlled case, as compared to
260.35 Hz for the uncontrolled case, for Re = 79. For Re = 150, the corresponding
values of frequencies are 572 Hz and 950 Hz for controlled and uncontrolled cases,
respectively. The calculated frequencies from FR are similar to the results shown in
figure 33 of Strykowski (1986).
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Differences between the calculated and measured non-dimensional shedding
frequencies can be understood if we look at the time scales and the time duration over
which the experimental and computational data are acquired. For the experimental
condition for Re =63 in the wind tunnel, the main cylinder used had a diameter of
D = 0.083 cm and the calculated free-stream speed is obtained as U∞ =1.518 m s−1. In
the computations, a convective time scale (D/U∞) is used for non-dimensionalization,
which works out as 0.000546 s. This implies that 1 s of physical experimentation is
equivalent to calculating up to a non-dimensional unit of 1831.5. In the presented
computations, a non-dimensional time step equal to 0.00005 has been used to perform
near-neutral computations, while maintaining the DRP property. This small time step
implies taking 36.63 million time steps used in computation to advance the physical
time by 1 s. Thus, even computing up to 1 s following the impulsive start of the
experiments is prohibitively expensive and time consuming. The results reported here
are for up to a time when the flow has exhibited a few cycles of vortex shedding
after the flow transient is gone. The experimental data have been collected over larger
time intervals as compared to the computational data. However, the computational
data has a far higher temporal resolution. All these must account for the difference
in shedding frequency, in addition to the numerical errors and tolerances in the
experiments.

Repeated measurements in Strykowski (1986) have revealed that the placement of
a control cylinder causes the velocity defect to occur close to the cylinder axis, that
is accompanied by a weak overshoot of the streamwise velocity profile over some
width. In figure 4, the computed instantaneous streamwise velocity distribution at
t = 70 is shown as a function of y/D for all the cases either at x/D = 10 or 20,
that show such an overshoot. The experimental data were recorded at x/D = 58,
which that is far beyond our computational domain and could not be verified.
However, we noted a reduction in the overshoot, when the velocity profile is farther
downstream. The distinctive feature of a significantly reduced value of u at y/D = 0,
for the controlled case as compared to the uncontrolled case is shown in figure 4(a) for
Re = 79. Also, note that in figure 4, we have shown instantaneous velocity distribution,
while that given in figure 20 of Strykowski (1986) corresponds to time-averaged
velocity data. The overall agreement between the velocity distribution and shedding
characteristics of experimental and computational results, shows the usefulness of the
present computations, which can be exploited by undertaking detailed studies of the
physics during such flow control, and this is performed next.

3. Vortex shedding as unsteady growth of disturbances
For the flow past an uncontrolled cylinder started impulsively, we see formation

of symmetric recirculation regions at the base of the geometry immediately after the
start. For Reynolds numbers greater than 500, we see secondary and tertiary vortices
located symmetrically about the centreline. These wake bubbles grow in width and
length while retaining symmetry up to a certain time, following which an asymmetry
develops that leads to alternate growth of one of the bubbles that is shed, forming the
Bénard–van Kármán street. In an experiment, this time of asymmetry is a function of
Reynolds number and, in general, is facility dependent; Honji & Taneda (1969) report
this non-dimensional time to be about 8 for Re =200, whereas Coutanceau & Defaye
(1991) report this non-dimensional time to be equal to 4 for Re= 10 000. Hankey &
Shang (1984) discuss the wake of bluff-body flows displaying two unstable modes –
the stronger asymmetric mode defines the Strouhal number and the symmetric mode is
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Figure 4. Instantaneous velocity distribution (t =70) at the indicated x/D locations for
various cases: (a) For Re = 79 controlled and uncontrolled cases are compared, x/D = 10;
(b) controlled cases compared for Re = 63, 79 and 150, x/D = 20.

responsible for higher-frequency oscillation in the wake. Nair & Sengupta (1996) have
shown that the computational onset of asymmetry is dependent upon the numerical
method: the more accurate the method, the further delayed the onset of asymmetry
will be. For low-accuracy methods (as in Braza, Chassaing & Ha Minh 1986), the
onset of asymmetry is often suppressed and artificial means are used to trigger flow
asymmetry. In the context of computations by the high-accuracy compact scheme,
here, the control cylinder acts as a promoter of asymmetry in the wake of the main
cylinder. This is evident from the Cl variation with time (figure 2).

In figure 5, streamline contour plots are shown over a single period, for different
cases to show the effects of the control cylinder. For example, for Re= 79, figures 5(a)
and 5(b) show the main effect is in the increased formation length of the bubbles in
the near wake of the main cylinder. For the controlled case (figure 5a) the elongated
bubbles change slowly with time. Compare this with the uncontrolled case (figure 5b).
The presence of the control cylinder, essentially deflects and elongates the bubble and
hence the flow becomes unsteady farther downstream, causing the shedding to be
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Figure 5(a). For caption see page 183.

weaker. The effects of the control cylinder can be seen better, for the case of Re= 63,
(figure 5c). Because of the smaller value of the Reynolds number, the formation
length is smaller, but the wake shows reduced unsteadiness and a distinct narrowing,
as also shown in figure 17 of Strykowski (1986). Vorticity contour comparisons do
not provide the same information, as shown here with the help of streamline contours,
and further discussion on this aspect is provided in the online Appendix.

The onset of asymmetry for the flows at Re =63 and 79 is discussed in the
following with the help of equation (1.1) which was introduced in Sengupta et al.
(2003a) to explain unsteady disturbance growth in boundary layers. This equation
was also used to explain the subscritical transition for the attachment line boundary
layer in Sengupta & Dipankar (2005) for the leading-edge contamination problem.
The main feature of (1.1) is its derivation from the Navier–Stokes equation without
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t = 95

t = 96

(b)

Figure 5(b). For caption see facing page

any approximations, making it an ideal tool to study the spatio-temporal growth of
disturbance energy for incompressible flow. We use (1.1) to study the onset of vortex
shedding and its control, with the time average of the flow field for a single period. The
time average over one period constitutes the equilibrium state, denoted by quantities
with the subscript m on the right-hand side of equation (1.1). The instantaneous
numerical solution of the Navier–Stokes equation provides the total solution, and
thus, the disturbance quantities (indicated by the quantities with subscript d) are
obtained by subtracting the time average from the instantaneous field.
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Figure 5. (a) Streamline contours for the controlled case for Re = 79 during one approximate
period of oscillation as seen in Cl vs. time plot. (b) Uncontrolled case for Re = 79. (c) Controlled
case for Re = 63.

As in Sengupta et al. (2003a) and Sengupta & Dipankar (2005), equation (1.1)
is not solved over the computational domain, instead the properties of the Poisson
equation are used to identify disturbance energy source(s) and sink(s) in the domain
by looking at the sign and magnitude of the right-hand side of the equation. A
negative right-hand side at any place indicates the presence of a disturbance energy
source locally, whereas a positive right-hand side represents a disturbance energy
sink. These are shown by drawing the contour plots for Re= 79(figure 6a)(figure 6b)
and 63. Negative contours are indicated by dotted lines shown during one cycle of
oscillation at the indicated time instants. For both cases, the largest energy source(s)
and sink(s) are associated with the control cylinder. Also, during the full cycle, these
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Figure 6(a). For caption see facing page.

source(s)/sink(s) change very slowly with time, indicating the effectiveness of the
control. For the higher-Reynolds-number case, there is reduced shedding away from
the main cylinder for the contour level, indicated by 4 in the figure. For the lower
Reynolds number, even such weak shedding is not seen. Thus, the stabilizing effect
is entirely due to the presence of the control cylinder. One reasons for the difference
of the flow field with Reynolds number is due to the difference of the equivalent
Reynolds number for the control cylinder. Additionally, the oncoming shear flow
over the control cylinder, will have significantly different effects at relatively low
Reynolds numbers.

4. Characterizing vortex shedding and control by POD
Shed vortices and their control can be attempted if we visualize them as coherent

structures obtained from POD analysis following Sirovich (1987) and Holmes, Lumley
& Berkooz (1996). For handling numerical data over a large domain by POD, the
method of snapshots of Sirovich (1987) is most appropriate, in particular, if the number
of input frames or snapshots, M is smaller than (Nx × Ny), the product of numbers of
grid points along the coordinate directions.
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Figure 6. (a) Contours of the right-hand side of (1.1), for Re = 79 controlled case. The dotted
lines correspond to energy sources and solid lines represent sinks. The same contours, shown
at t = 68, are used in all other frames. (b) Re = 63, t = 72.

The data obtained by DNS provide the ensemble at M instants in time. If we define
the time-varying part of the vorticity field as,

ω′(x, t) =

M∑
m=1

am(t)φm(x), (4.1)

then the eigenvectors φm are obtained as the eigenvectors of the covariance
matrix whose elements are defined as Rij = (1/M)

∑M

m=1 ω′(xi, tm)ω′(xj , tm) with
i, j = 1, 2, . . . , N defined over all the collocation points totalling up to N . These
complete eigenvectors have eigenvalues that give the probability of their occurrence
and their sum giving the total enstrophy of the system. The time dependence obtained
from the Galerkin expansion of the flow field cannot be used to study absolute
instability of the near wake, as POD is a statistical projection of the disturbance field
with respect to an appropriately chosen mean field.

In table 1, the first few leading eigenvalues for different computed cases are shown,
which were obtained by taking forty snapshots. To produce a correct statistical picture,
it is necessary to remove the effects of early transients. In figure 7, results of two
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Eigenvalues Eigenvalues Eigenvalues Eigenvalues Eigenvalues
Serial (Re= 63, (Re= 79, (Re= 79, (Re= 150, (Re= 150,

number controlled) controlled) uncontrolled) controlled) uncontrolled)

1 0.5564598 2.3509881 4.2289697 9.1175491 21.7850086
2 0.5261365 2.2717989 4.1153238 7.9681241 8.5146694
3 0.0933332 0.2374371 0.4863833 1.5971635 3.4299210
4 0.0620794 0.2268858 0.4740239 1.5190875 3.1781699
5 0.0473023 0.0581371 0.3172718 0.5037713 1.2976231
6 0.0397634 0.0459855 0.2865087 0.4175717 1.1960167
7 0.0377989 0.0389407 0.1683907 0.3374339 0.6433015
8 0.0087726 0.0374733 0.1495850 0.3209011 0.5159717
9 0.0058059 0.0272480 0.1224876 0.2700002 0.4200889

10 0.00510475 0.0091951 0.0950606 0.1997370 0.3506392

Table 1. Leading eigenvalues for various cases.
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Figure 7. POD analysis for Re = 63 controlled case with: (a) cummulative enstrophy
distribution among the eigen-modes using full data from t = 2 to 80 and from t = 41 to
80, to show the effects of early transients; (b) eigenfunctions for the case without transient
(t = 41–80) and (c) eigenfunctions for the case with transient effects (t =2–80).

cases for Re = 63 are compared, with one set produced by taking data from t =2 to
80, the other from t =41 to 80. In figure 7(a), the cumulative enstrophy contents are
compared for the two cases, while the corresponding first three eigen-modes are shown
in figures 7(b) and 7(c). Removal of the early transients has a significant effect on the
PODs, requiring far fewer modes to represent the same amount of enstrophy of the
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Figure 8. POD analysis for Re = 79 case, with and without control: (a) cummulative enstrophy
distribution among the eigen-modes using full data from t = 41 to 80; (b) eigenfunctions for
the controlled case and (c) eigenfunctions for the uncontrolled case.

flow field. Thus, the remaining PODs shown here would correspond to data sets after
removal of the early transient effects, which can be used for a possible low-dimensional
description of vortex shedding, as most of the energy/enstrophy are contained in the
first few modes only. There is a definitive pattern for the eigenvalues with changes in
Reynolds number for the controlled and uncontrolled cases. Reduction of Reynolds
number or introduction of control reduces the eigenvalues monotonically for all the
modes.

In figures 8 and 9, we have compared the PODs between the controlled and
uncontrolled cases for Re= 79 and 150, respectively. For the controlled cases, the first
two modes account for more than 75 % of the enstrophy. Thus, control brings in
coherence in the wake vortical structures. The alternate signed arrowhead structures,
for the first two eigenmodes, are the building blocks for the vorticity distribution.
Vortex shedding begins from where these structures originate. When two modes carry
most of the enstrophy, the pattern of vortex shedding is determined by the phase
shift between these two. It is noted in Deane et al. (1991) and Deane & Mavriplis
(1994) that the travelling characteristic (during the transformation from absolute
to convective instability) of the vortex street is due to the coupling of a pair of
similar amplitude modes that are out of phase by a quarter of a period. In general,
higher modes are antisymmetric about the wake centreline. For controlled cases, this
antisymmetry is seen to be prominent, although the enstrophy carried in the controlled
case is lower as compared to the uncontrolled case.
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Figure 9. POD analysis for Re = 150 case, with and without control: (a) cummulative
enstrophy distribution among the eigen-modes using full data from t = 41 to 80; (b) eigen-
functions for the controlled case and (c) eigenfunctions for the uncontrolled case.

5. Summary
Results from a numerical study are reported here for the alteration of the vortex-

shedding pattern in the wake of a cylinder at low Reynolds numbers (63, 79 and 150),
by placing a smaller control cylinder in the near wake of the main cylinder. Numerical
results have been obtained by using a high spectral accuracy compact scheme
employing an over-set grid method developed for this work. Detailed numerical
properties of various schemes to capture the present flow field are given in the
online Appendix, to explain why the present method is successful. Computed results
have been validated by comparing them with the experimental results reported in
Strykowski (1986) and Strykowski & Sreenivasan (1990) for Re =63 and 79. For all
the Reynolds-number cases, placement of the control cylinder leads to the following
effects: (i) suppression of vortex shedding, in terms of reduced amplitude of unsteady
variation for lift which also leads to narrowing of the wake; (ii) decreased shedding
frequency; and (iii) drag reduction. The suppression of vortex shedding and reduction
of drag can be seen from the time variation of Cl and Cd shown in figure 2. Suppression
and alteration of the shedding pattern can be seen figure 3, which shows the variation
of the Roshko number and the power spectral density with and without the control
cylinder. For example, from figures 3(b) and 3(c), we see that the shedding frequency
reduces on the introduction of the control cylinder, which matches the experimental
results given in Strykowski (1986). Instantaneous velocity distribution in the wake of
the cylinder (figure 4) also shows qualitative agreement with similar figure shown in
Strykowski (1986).
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The reason behind the flow control achieved via the introduction of the control
cylinder is explained through the flow structure shown with the streamfunction contour
plots of figure 5. For the flow without control, the formation length is short and we
see significant normal oscillation of the wake immediately behind the main cylinder
(figure 5b). On the introduction of the control cylinder, this normal oscillation is
suppressed, which leads to the formation of a quasi-symmetric attached deflected
bubble in the near wake. Delayed normal oscillation also leads to longer formation
length and narrower wake-width. The latter, in turn, leads to drag reduction (figure 5a).
At this Reynolds number, the wake oscillation is seen to occur at a station farther
downstream. For Re = 63, the quasi-symmetric near-wake bubble is comparatively
shorter, but the reduced Reynolds number displays completely suppressed wake
oscillation and a significant narrowing of the far wake.

The effect of the control cylinder is also explained by using the receptivity equation
(1.1) developed in Sengupta et al. (2003a) to explain bypass transition. Application of
the same for the present case in figure 6, shows that the control cylinder is responsible
for creating different effects at different Reynolds numbers. This is because the
effective Reynolds number for the control cylinder is small, but has different diffusive
effects for the cases considered (6.3 for Re =63 to 21.4 for Re= 150). Also, the effects
of shear of the oncoming flow at such lower Reynolds numbers over the control
cylinder contributes to the difference. As seen in these figures, the control cylinder
acts as the disturbance energy sink affecting the normal cycle of vortex shedding.

The direct simulation data are also analysed using the POD technique of Holmes
et al. (1996) and Sirovich (1987) in figures 7 to 9, to explain the function of the
control cylinder. It is seen that the presence of the arrowhead structures of the
leading eigenmodes are the building blocks for vortical distribution in the wake.
Linear superposition and pairwise coupling of these are responsible for alternate
vortical shedding in uncontrolled flows. The introduced control cylinders focus
total energy/enstrophy on fewer eigenmodes. The higher modes (that are also
antisymmetric) carry very little energy/enstrophy of the flow and are not significant.
Also, the presence of the control cylinder has the effect of narrowing the wake in
comparison to the uncontrolled case (figures 8 and 9).
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